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AND LAURETTE S. TUCKERMAN
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The Boussinesq equations for Rayleigh–Bénard convection are simulated for a cylin-
drical container with an aspect ratio near 1.5. The transition from an axisymmetric
stationary flow to time-dependent flows is studied using nonlinear simulations, linear
stability analysis and bifurcation theory. At a Rayleigh number near 25 000, the
axisymmetric flow becomes unstable to standing or travelling azimuthal waves. The
standing waves are slightly unstable to travelling waves. This scenario is identified as
a Hopf bifurcation in a system with O(2) symmetry.

1. Introduction
Rayleigh–Bénard instability in a fluid layer heated from below in the presence

of gravity is the classic prototype of pattern formation. A new chapter in its
investigation began with the increase of computer performance that made feasible
three-dimensional nonlinear high-resolution simulations of the Boussinesq equations
governing this system.

We are interested in a fluid layer confined in a vertical cylinder whose upper and
lower bounding surfaces are maintained at a temperature difference measured by the
Rayleigh number. The conductive solution for this system is a motionless state with a
uniform vertical temperature gradient. This solution is stable up to a critical Rayleigh
number Rac, whose value depends on the aspect ratio Γ ≡ radius/height. Above Rac,
convective motions appear and form various roll structures.

A summary covering the developments since the mid-1980s for convective systems
with large aspect ratio (Γ � 1) can be found in Bodenschatz, Pesch & Ahlers (2000).
In such domains a rich variety of patterns was reported: ‘Pan Am’ patterns (arches
with several centres of curvature, see Ahlers, Cannell & Steinberg 1985), straight
parallel rolls (Croquette, Le Gal & Pocheau 1986; Croquette 1989), concentric rolls
(targets, see Koschmieder & Pallas 1974; Croquette, Mory & Schosseler 1983), one-
and several-armed rotating spirals (Plapp et al. 1998), targets with dislocated centre
(Croquette 1989), hexagonal cells (Ciliberto, Pampaloni & Pérez-Garcı́a 1988) and
spiral-defect chaos (Morris et al. 1993). A large overview on convective phenomena
observed experimentally before this time can also be found in Koschmieder (1993).

We focus here on cylinders with moderate aspect ratio Γ ∼ 1. The flow structure
then depends strongly on system geometry. For this regime, the stability of the
conductive state was well established in the 1970s–1980s by Charlson & Sani (1970),
Stork & Müller (1975) and Buell & Catton (1983). Critical Rayleigh numbers Rac are
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about 2000 for Γ � 1, increasing steeply for lower Γ and decreasing asymptotically
towards Rac = 1708 for Γ → ∞. Charlson & Sani (1970) estimated by a numerical
variational technique the onset of axisymmetric convection in cylinders of aspect
ratios between 0.5 and 8, with insulating and conducting sidewalls. They found the
critical Rayleigh numbers (Rac = 2545 for Γ =1, decreasing for higher Γ ) and the
corresponding number of rolls. They then generalized this analysis (Charlson &
Sani 1971), including non-axisymmetric modes and predicting Rac and corresponding
critical azimuthal wavenumbers. Stork & Müller (1975) observed experimentally
convective patterns in annuli and cylinders of aspect ratio 0.7 � Γ � 3.2, varying
the sidewall insulation. Their critical Rayleigh numbers were in good agreement
with those predicted by Charlson & Sani. Rosenblat (1982) investigated convective
instabilities numerically for free-slip boundary conditions, using a severely truncated
expansion in a small number of eigenmodes. He described non-axisymmetric motions
existing just above onset for aspect ratios between 0.5 and 2.0. Finally, Buell & Catton
(1983) described how the onset of convection is influenced by the ratio of the fluid
conductivity to that of the wall, by performing linear analysis for the aspect ratio range
0 <Γ � 4. They determined the critical Rayleigh number and azimuthal wavenumber
as a function of both aspect ratio and sidewall conductivity, thus completing the
results of the previous investigations, which considered either perfectly insulating or
perfectly conducting walls. These results were confirmed by Marqués et al. (1993).
The flow succeeding the conductive state is three-dimensional over large ranges of
aspect ratios, contrary to the expectations of Koschmieder (1993).

The stability of the first convective state, depending on both aspect ratio and
Prandtl number, has been investigated mainly for situations in which the primary
flow is axisymmetric. Charlson & Sani (1975) attempted to predict numerically the
stability of the primary axisymmetric flow, but the resolution available at that time
was inadequate to the task. Müller, Neumann & Weber (1984) investigated convective
flows experimentally and theoretically. They observed axisymmetric flows for Γ = 1
and non-axisymmetric flows for 0.1 � Γ � 0.5. Hardin & Sani (1993) calculated weakly
nonlinear solutions to the Boussinesq equations for several moderate and small aspect
ratios. They found a bifurcation from the axisymmetric state towards a mode with
azimuthal wavenumber m =2 for Γ = 1, Pr = 6.7 and Rac2 = 2430.

The most complete numerical study of secondary convective instabilities for
moderate aspect ratio cylinders was performed by Wanschura, Kuhlmann & Rath
(1996). For cylinders with insulating sidewalls and 0.9 <Γ < 1.57, the primary
bifurcation to convection occurs at Rac ≈ 2000 and leads to an axisymmetric flow
whose stability was investigated for Prandtl numbers 0.02 and 1. Wanschura et al.
predicted the succeeding flows to be steady, except over a narrow aspect ratio range
1.45 � Γ � 1.57 at Pr= 1, where they found oscillatory instabilities at Rac2 ≈ 25 000
towards flows with azimuthal wavenumbers m =3 and m =4. The primary aim of
this paper is to provide a more detailed description of these bifurcations.

Touihri, Ben Hadid & Henry (1999) numerically investigated the stability of the
conductive state for aspect ratios Γ =0.5 and Γ = 1. They described the main critical
modes and established a diagram of primary bifurcations, including unstable branches.
They also found a secondary bifurcation point Rac2, at which the axisymmetric flow
becomes unstable towards a two-roll flow and calculated Rac2 for Γ = 1 and 0 <

Pr< 1.
An interesting experimental study was carried out by Hof, Lucas & Mullin

(1999). Varying the Rayleigh number through different sequences of values, for fixed
parameters Γ =2.0 and Pr = 6.7, they obtained several different stable patterns for the
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same final Rayleigh number. They also reported a transition from an axisymmetric
steady state towards azimuthal waves. Our numerical simulations of this phenomenon
are the subject of a separate investigation.

Convective patterns were numerically investigated by Rüdiger & Feudel (2000)
and by Leong (2002). Rüdiger & Feudel found stability ranges for multi-roll patterns,
targets and spirals for Γ = 4, Pr= 1. Leong observed several steady convective patterns
for aspect ratios 2 and 4 and Prandtl number Pr= 7, all of which were stable in the
range 6250 � Ra � 37 500, and calculated the heat transfer for each pattern.

Convective systems often display oscillatory behaviour. In binary fluid or rotating
convection, the primary bifurcation is usually to periodic states, while in Rayleigh–
Bénard convection, periodic behaviour occurs as a secondary bifurcation. The
oscillatory and skew-varicose instabilities of long straight parallel rolls calculated
in, for example, Clever & Busse (1974) and Busse & Clever (1979), are manifested as
travelling waves along rolls and as periodic defect nucleation (Croquette et al. 1986;
Croquette 1989; Rüdiger & Feudel 2000); rotating spirals were observed by the same
investigators; and radially propagating patterns of concentric rolls were observed by
Tuckerman & Barkley (1988). However, none of these manifestations of oscillatory
behaviour resemble the azimuthal waves we describe in this study.

Competition between standing and rotating azimuthal waves has been extensively
studied in thermocapillary convection, driven by surface-tension gradients. For
example, competition between rotating and standing waves is observed on the
upper free surface of an open cylindrical container by Sim & Zebib (2002) and
in the midplane of a cylindrical liquid bridge with free outer surface by Leypoldt,
Kuhlmann & Rath (2000), both of aspect ratio 1. These azimuthal waves are very
similar to those we describe in this study; however, such flows are uncommon in the
Rayleigh–Bénard (buoyancy-driven) convection literature.

We wished to study in detail the time-periodic non-axisymmetric states in cylindrical
Rayleigh–Bénard convection resulting from the bifurcation found by Wanschura et al.
(1996). Hence we have simulated numerically the loss of stability of the first convective
axisymmetric solution undergoing an oscillatory bifurcation for 1.45 � Γ � 1.57 and
Pr = 1. In this paper we describe the results of nonlinear simulations and linear
stability analysis, which identify the scenario in terms of bifurcation theory in systems
with symmetries.

In addition to obtaining results particular to cylindrical Rayleigh–Bénard
convection with these parameter combinations, our purpose is to demonstrate
how numerical and theoretical techniques can be combined in order to obtain a
complete bifurcation-theoretic understanding of the oscillatory states produced by
this secondary bifurcation. Such an approach can be applied to analyse transitions in
a wide variety of other physical systems, ranging from flows driven by differentially
rotating boundaries (Nore et al. 2003) to Bose–Einstein condensation (Huepe et al.
2003).

2. Method
2.1. Governing equations

We consider a fluid confined in a cylinder of depth d and radius R (figure 1).
The aspect ratio is defined as Γ ≡ R/d . The fluid has kinematic viscosity ν, density
ρ, thermal diffusivity κ and thermal expansion coefficient (at constant pressure) γ .
The top and bottom temperatures of the cylinder are kept constant, at T0 − �T/2
and T0 + �T/2, respectively, leading to the linear conductive temperature profile
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Figure 1. Geometry and coordinate system.

T (z) = T0 − z�T/d . The lateral walls are insulating. The Rayleigh number Ra and
the Prandtl number Pr are defined by

Ra ≡ �Tgγ d3

κν
, (2.1a)

Pr ≡ ν

κ
. (2.1b)

Using the units d2/κ , d , κ/d and νκ/γgd3 for time, distance, velocity and temperature,
we define u and h to be the non-dimensionalized velocity and deviation of the
temperature from the basic vertical profile, respectively. We obtain the Boussinesq
equations governing the system:

Pr−1(∂t u + (u · ∇)u) = −∇p + �u + hez, (2.2a)

∂th + (u · ∇) h = Ra uz + �h, (2.2b)

∇ · u = 0. (2.2c)

The boundary conditions for velocity are no-slip and no-penetration

u = 0 for r = Γ or z = ±1/2. (2.3)

Since the horizontal plates are assumed to be perfectly conducting (Dirichlet condition
for h) and the vertical walls are insulating (Neumann condition), the boundary
conditions for the temperature are

h = 0 for z = ±1/2, (2.4a)

∂h

∂r
= 0 for r = Γ. (2.4b)

2.2. Symmetries

Symmetries play an important role in the possible transitions undergone by this
system. The Boussinesq equations (2.2) with boundary conditions (2.3)–(2.4) have
reflection symmetry in the vertical direction z, and rotational and reflection symmetry
in the azimuthal direction θ . The reflection symmetry in z is broken by the first
bifurcation to a convective state. If the first convective state consists of axisymmetric
convective rolls, then its remaining symmetries are reflection and rotation in θ ,
which together comprise the symmetry group O(2). Bifurcations in the presence of
O(2) symmetry were studied and classified during the 1980s by a large number of
workers (e.g. Bajaj 1982; Golubitsky & Stewart 1985; Knobloch 1986; van Gils &
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Mallet-Paret 1986; Kuznetsov 1998; Coullet & Iooss 1990). We give a brief summary
of their results.

First, the critical eigenvector may be axisymmetric. This case may be further
subdivided according to whether the eigenvector is reflection-symmetric or
antisymmetric in θ and whether the eigenvalue is real or complex. A reflection-
symmetric eigenvector can lead to a target pattern of radially propagating rolls (e.g.
Tuckerman & Barkley 1988). The breaking of reflection symmetry is associated with
azimuthal flow.

Secondly, the critical eigenvector may be non-axisymmetric. If the critical eigenvalue
is real, then the resulting bifurcation is a circle pitchfork, leading to a ‘circle’ of steady
states parameterized by phase. Each steady state is reflection symmetric in θ (about
some value θ0). If reflection symmetry is broken by a subsequent bifurcation, the
scenario is that of a drift pitchfork, leading to slow motion (‘drift’) along the circle.
A complex eigenvalue corresponding to a non-axisymmetric eigenvector, like that
found by Wanschura et al. (1996) for parameters 1.45 � Γ � 1.57, Pr= 1, Ra > 23 000,
leads to a Hopf bifurcation which engenders three nonlinear branches: standing waves,
counterclockwise travelling waves, and clockwise travelling waves. The standing waves
are reflection-symmetric in θ (again about some value θ0), while the travelling waves
break this symmetry. Our aim is to determine which of these types of waves is realized
by our physical system.

2.3. Numerical integration

We integrated the equations by a classical pseudospectral method (Gottlieb & Orszag
1977), in which each scalar f of the fields u and h is represented using Chebyshev
polynomials in the radial and vertical direction and Fourier series in the azimuthal
direction

f (r, z, θ, t) =

Nr ,Nz,Nθ∑
j,k,m=0

f̂ jkm(t)Cj (r/Γ )Ck(2z)eimθ + c.c., (2.5)

where the permitted combinations of (j, m) are restricted by the parity and regularity
conditions described in Tuckerman (1989) for ur , uθ , uz and h. The nonlinear
(advective) terms were calculated in physical space and integrated via the Adams–
Bashforth formula, while the linear (diffusive) terms were calculated in spectral space
and integrated via the implicit Euler formula. An influence matrix method was used to
impose incompressibility (Tuckerman 1989). A resolution of Nr+1 = 36, 2(Nθ +1) = 80,
Nz + 1 =18 gridpoints or modes was found to be sufficient for nonlinear simulations.
All computations were performed on the NEC SX-5 vector supercomputer, with time
step 2 × 10−4 or 4 × 10−4, depending on Ra, with CPU time per time step per grid
point of 10−6.

2.4. Linear stability analysis

An important additional element in understanding the phenomena undergone by
the system is linear stability analysis. The procedure, which we summarize below,
is described in more detail in Mamun & Tuckerman (1995); Tuckerman & Barkley
(2000) and references therein. We linearize the equations about a steady state (U, H ):

Pr−1(∂t u + (U · ∇)u + (u · ∇)U) = −∇p + �u + hez, (2.6a)

∂th + (U · ∇)h + (u · ∇)H = Ra uz + �h, (2.6b)

∇ · u = 0. (2.6c)



284 K. Borońska and L. S. Tuckerman

Equations (2.6) with boundary conditions (2.3)–(2.4) are then integrated in time in
the same way as the nonlinear equations (2.2). We abbreviate the linear evolution
problem (2.6) by

∂t

(
u
h

)
= L

(
u
h

)
. (2.7)

Temporal integration is equivalent to carrying out the power method on the
approximate exponential operator, since(

u
h

)
(t + �t) = eL�t

(
u
h

)
(t). (2.8)

In order to extract the leading real or complex eigenvalues (those of largest real
part) and corresponding eigenvectors, we postprocess the results of integrating (2.6)
as follows. A small number of fields(

u
h

)
(0),

(
u
h

)
(T ),

(
u
h

)
(2T ), . . . ,

(
u
h

)
((K − 1)T ) (2.9)

are calculated, by carrying out T/�t linearized timesteps. The Krylov space
corresponding to initial vector (u, h)T and matrix eLT is the K-dimensional linear
subspace consisting of all linear combinations of vectors in (2.9). These vectors are
orthonormalized to one another to generate a set of vectors v1, v2, v3, . . . , vK which
form a basis for the Krylov space. The action of the operator on the Krylov space is
represented by a small (K × K) matrix M whose elements are

Mjk ≡ 〈vj , e
LTvk〉. (2.10)

The small matrix M can be directly diagonalized. Its eigenvalues λ approximate
a small number of the eigenvalues of the large matrix eLT: this is the essence of
Arnoldi’s method. The procedure of generating the Krylov space via repeated action
of eLT selects preferentially the K dominant values (those of largest magnitude) of
eLT , i.e. the K leading eigenvalues (those of largest real part) of L.

The eigenvectors of M prescribe coefficients of the vectors vj which can be combined
to form approximate eigenvectors φ of eLT. The accuracy of these approximate
eigenpairs (λ, φ) is measured by the residue ||eLTφ−λφ|| in the case of real eigenvalues
or by the residues ||eLTφR − (λRφR − λIφI )||, ||eLTφI − (λRφI + λIφR)|| in the case of
complex eigenvalues. If the desired eigenvalues have sufficiently small residues, they
are accepted; otherwise we continue integration of (2.6), replacing (2.9) by(

u
h

)
(T ),

(
u
h

)
(2T ),

(
u
h

)
(3T ), . . . ,

(
u
h

)
(KT ) (2.11)

and so on, until the residue is below the acceptance criterion.
After integrating the axisymmetric version of the nonlinear equations (2.2) at a

given Rayleigh number to create the nonlinear axisymmetric solution (U, H ), we
integrated the non-axisymmetric linearized equations (2.6) to evolve (u, h) from an
arbitrary initial condition. To integrate (2.6), we used a time step of �t =10−4 and
a spatial resolution of Nr = 47, Nz = 29 for each azimuthal mode. To construct the
Krylov space (2.9) and approximate eigenpairs, we used K = 10 vectors, a time interval
of T = 100�t = 10−2, and an acceptance criterion of 10−5.

2.5. Complex eigenvectors and their representations

The linear problem (2.6) for perturbations (u, h) about an axisymmetric convective
state (U, H ) can be divided into decoupled subproblems, each corresponding to
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a single azimuthal wavenumber m. The problem for wavenumber m can in turn be
divided into two identical decoupled subproblems, corresponding to fields of the form

ûr (r, z) cos(mθ), ûθ (r, z) sin(mθ), ûz(r, z) cos(mθ), ĥ(r, z) cos(mθ), (2.12a)

and

ûr (r, z) sin(mθ), ûθ (r, z) cos(mθ), ûz(r, z) sin(mθ ), ĥ(r, z) sin(mθ). (2.12b)

For simplicity, we will represent each of these types of vector fields by its temperature
component ĥ(r, z) and leave the dependence on θ and on t to be written explicitly.
We may write the linear evolution problem (2.7) restricted to fields with trigonometric
dependence on mθ such as (2.12a)–(2.12b) as

∂t ĥ = L̂mĥ. (2.13)

A real eigenvalue breaking azimuthal symmetry in an O(2) symmetric situation is
associated with a two-dimensional eigenspace, consisting of linear combinations of
vectors of type (2.12a) and (2.12b). Since

α ĥ(r, z) cos(mθ) + β ĥ(r, z) sin(mθ ) = C ĥ(r, z) cos(m(θ − θ0)), (2.14a)

where

C =
√

α2 + β2, mθ0 = atan(β/α), (2.14b)

all real eigenvectors have m nodal lines and reflection symmetry about some θ0. If we
take C ∝

√
Ra − Rac2 and add (2.14a) to the basic axisymmetric state, we obtain the

‘circle’ of steady states resulting from a circle pitchfork mentioned in § 2.2.
A complex eigenvalue in the O(2) symmetric situation is associated with a

four-dimensional eigenspace. Within each eigenvector class (2.12a) and (2.12b), the
eigenspace is two-dimensional, spanned by two linearly independent eigenvectors ĥR

and ĥI , which are transformed by L̂m as

L̂m

(
ĥR

ĥI

)
=

(
µ −ω

ω µ

)(
ĥR

ĥI

)
. (2.15)

In (2.15), ĥR can be replaced by any linear combination of ĥR and ĥI , but once
ĥR is selected, the choice of ĥI follows from (2.15). Although the components of
equation (2.15) are the real and imaginary parts of the complex equation

L̂m(ĥR + iĥI ) = (µ + iω)(ĥR + iĥI ), (2.16)

the customary designation of ĥR and ĥI as the real and the imaginary part of the
eigenvector is arbitrary, as reflected by the fact that an eigenvector can be multiplied
by any complex number.

To form eigenvectors of the full cylindrical problem belonging to the four-
dimensional eigenspace, each of ĥR and ĥI is multiplied by a trigonometric function.
This yields as a basis for the four-dimensional eigenspace:

ĥR(r, z) cos(mθ), ĥI (r, z) cos(mθ), (2.17a,b)

ĥR(r, z) sin(mθ), ĥI (r, z) sin(mθ). (2.17c,d)

One choice for a complex eigenvector pair is (2.17a,b), since

L̂m

(
ĥR cos(mθ)

ĥI cos(mθ)

)
=

(
µ −ω

ω µ

)(
ĥR cos(mθ)

ĥI cos(mθ)

)
. (2.18)

More generally, the trigonometric dependence can be taken as in (2.14a), with the
same trigonometric dependence for each of ĥR and ĥI , to form a complex conjugate
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eigenvector pair each of whose members has m nodal lines and m axes of reflection
symmetry, including θ = θ0. The evolution in time under (2.13) for a field with an
initial condition of this form is

h(r, θ, z, t) = αeµt [ĥR(r, z) cos(ωt) − ĥI (r, z) sin(ωt)] cos(m(θ − θ0)). (2.19)

The subspace of fields with azimuthal dependence cos(m(θ − θ0)) is invariant under
linearized time evolution. (There also exists an invariant subspace under the nonlinear
time evolution, which includes harmonics cos(km(θ − θ0)), with the same m axes of
reflection symmetry.) If we take µ = 0 and α ∝

√
Ra − Rac2 in (2.19), and add this

to the basic axisymmetric solution, then we obtain to first order the standing-wave
solution mentioned in § 2.2.

Any combination of (2.17a,b)–(2.17c,d) is also a member of a complex eigenvector
pair. The calculation

L̂m

(
αĥR(r, z) cos(mθ) + βĥI (r, z) sin(mθ)

αĥI (r, z) cos(mθ) − βĥR(r, z) sin(mθ)

)

=

(
µ −ω

ω µ

) (
αĥR(r, z) cos(mθ) + βĥI (r, z) sin(mθ )

αĥI (r, z) cos(mθ) − βĥR(r, z) sin(mθ )

)
, (2.20)

when compared with (2.15), shows that the two components of the vector in (2.20)
form a complex conjugate pair of eigenvectors for the full cylindrical problem, as
in (2.15). Because ĥR(r, z) and ĥI (r, z) have different functional forms in (r, z), these
vectors, unlike those of (2.14a), cannot be combined into a single trigonometric
function. Neither of the two components of (2.20) has nodal lines or reflection
symmetry about any axis if both α and β are non-zero. The evolution in time under
(2.13) for a field whose initial condition is the first component of (2.20) is

h(r, θ, z, t) = eµt [ĥR(r, z)(α cos(mθ) cos(ωt) − β sin(mθ) sin(ωt))

+ ĥI (r, z)(α cos(mθ) sin(ωt)) + β sin(mθ) cos(ωt))]. (2.21)

If β = ±α, then (2.21) becomes

h(r, θ, z, t) = eµtα[ĥR(r, z) cos(mθ ± ωt) + ĥI (r, z) sin(mθ ± ωt)], (2.22)

where t or θ may be replaced by (t − t0) or (θ − θ0). If we take µ = 0 and
α ∝

√
Ra − Rac2 in (2.22) and add the basic axisymmetric solution, then we obtain,

to first order, the expression for clockwise (mθ + ωt) or counterclockwise (mθ − ωt)
travelling waves mentioned in § 2.2.

2.6. Amplitude equations and normal form

The linearized evolution treated in the previous section permits any combinations
of (2.17a,b)–(2.17c,d). The mathematical analysis of Hopf bifurcation in the presence
of O(2) symmetry carried out by, for example, Bajaj (1982); Golubitsky & Stewart
(1985); Knobloch (1986); van Gils & Mallet-Paret (1986); Kuznetsov (1998) describes
the effect of including generic nonlinear terms compatible with the symmetries.
Following the formulation of these authors, we decompose the field into a sum of
clockwise and counterclockwise travelling waves with complex amplitudes ζ− = ρ−eiφ−

and ζ+ = ρ+eiφ+ , respectively. The four variables ρ±, φ± form another description of
the four-dimensional space described in the previous section. The nonlinear evolution
of ζ± near the bifurcation can be described by the following amplitude equations or
normal form:

ζ̇+ = (µ + iω + a|ζ−|2 + b(|ζ+|2 + |ζ−|2))ζ+, (2.23a)

ζ̇− = (µ + iω + a|ζ+|2 + b(|ζ+|2 + |ζ−|2))ζ−. (2.23b)
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Name Solution Growth rates Frequencies

Basic state ρ+ = ρ− = 0 µ, µ

Counterclockwise wave ρ+ =

√
−µ

br

, ρ− = 0 −2µ, −ar

br

µ ω − bi

br

µ

Clockwise wave ρ− =

√
−µ

br

, ρ+ = 0 −2µ, −ar

br

µ −
(
ω − bi

br

µ
)

Standing wave ρ+ = ρ− =

√
−µ

ar + 2br

−2µ,
2ar

ar + 2br

µ ±
(
ω − ai + 2bi

ar + 2br

µ
)

Table 1. Solutions to (2.24) and their properties.

T
W

 –

SW SWT
W

 –

TW + TW +

(a) (b)

Figure 2. Phase diagram illustrating stability of (a) standing waves (SW) or (b) travelling
waves (TW). The origin is the basic state and the axes represent amplitudes of counterclockwise
and clockwise travelling waves ρ+ and ρ−. Standing waves can be constructed as an equal
superposition of the two.

We use the normal form to interpret the results of our full numerical simulations.
Separating (2.23) into equations for real amplitudes ρ± and phases φ± leads to

ρ̇+ = (µ + arρ
2
− + br (ρ

2
+ + ρ2

−))ρ+, (2.24a)

ρ̇− = (µ + arρ
2
+ + br (ρ

2
+ + ρ2

−))ρ−, (2.24b)

φ̇+ = ω + aiρ
2
− + bi(ρ

2
+ + ρ2

−), (2.24c)

φ̇− = −ω − aiρ
2
+ − bi(ρ

2
+ + ρ2

−). (2.24d)

Periodic solutions to (2.24) must be either standing or travelling waves. Solutions to
(2.24) and their properties are given in table 1. This table shows that both standing-
and travelling-wave solutions exist for µ > 0 if br and ar + 2br are both negative. A
positive growth rate from a solution indicates instability. Thus, the stability of the
solutions depends on the sign of ar : if ar > 0, then standing waves are stable and
travelling waves unstable, and vice versa for ar < 0. Figure 2 shows phase portraits
for the amplitudes (ρ+, ρ−), for the cases in which all three branches co-exist and
either the standing or the travelling waves are stable.

3. Results
3.1. Conductive state

Figure 3 shows the linear stability limits of the conductive state to perturbations
with azimuthal wavenumbers m = 0, 1 and 2 (K. Borońska & P. Boroński 2001,
unpublished results). These results, obtained with the linearized version of our code,
agree very closely with those presented by Wanschura et al. (1996). Note that in
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Figure 3. Linear stability of the conductive state.

(a) (b)

Figure 4. Temperature contours for axisymmetric solutions at Γ = 1.47 and Ra= 1950 with
(a) upward and (b) downward flow at the centre. Solid (dashed) curves correspond to positive
(negative) values, here and in subsequent visualizations.

the range 0.9 <Γ < 1.57, the primary instability is axisymmetric. Immediately below
and above this range of aspect ratio, the first instability is to an eigenvector with
azimuthal wavenumber m = 1. Instability of the conductive state is independent of
Pr. However, the resulting nonlinear states and their stability depend on Pr; in the
remainder of the study we fix Pr = 1.

3.2. Steady axisymmetric state

We reproduced the primary flow for Γ = 1.47 and Ra =1950, parameters for which,
according to Wanschura et al. (1996) and figure 3, the conductive state is unstable
only to axisymmetric perturbations. In a fully three-dimensional simulation, starting
the evolution from an arbitrary non-axisymmetric perturbation about the conductive
state, we obtained a flow consisting of one toroidal roll. While axisymmetric, this
flow breaks the reflection symmetry in z and thus two such states exist, with either
upflow or downflow at the centre; these are illustrated in figure 4. We used the state
with downflow at the centre as the initial condition for higher Rayleigh numbers.
According to the calculations of Wanschura et al. (1996), the axisymmetric state first
bifurcates towards a flow with azimuthal wavenumber m =3 for 1.45 � Γ < 1.53 and
with wavenumber m =4 for 1.53 � Γ � 1.57. The critical Rayleigh numbers Rac2 at
which this loss of stability occurs are given in table 2.

3.3. Eigenvalues and eigenvectors

Using the methods described in § 2.4, we integrated the evolution equations (2.6)
linearized about axisymmetric solutions for aspect ratios 1.45 � Γ � 1.57 and several
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Γ Present study Wanschura et al. Error

Rac2 24 738 24 928 0.76 %
1.47 ωc2 42.33 42.54 0.48 %

mc2 3 3

Rac2 22 849 23 011 0.70 %
1.57 ωc2 45.26 45.47 0.45 %

mc2 4 4

Table 2. The parameters of the oscillatory bifurcations found by linear analysis: critical
Rayleigh numbers Rac2, critical frequencies ωc2 and azimuthal wavenumbers of critical
eigenvectors for two aspect ratios.

Eigenvector visualization

Eigenvalue real part ± imaginary part Wavenumber Error

0.86 ± 46.3i 4 10−10

0.24 ± 41.6i 3 2 × 10−10

−0.81 – 1 6 × 10−10

−4.40 ± 45.9i 5 9 × 10−07

Table 3. For Ra= 24 000, Γ = 1.57: eigenvalues, visualization of corresponding eigenvectors,
azimuthal wavenumber and residual error. The visualized field is the temperature at the
midplane; for complex conjugate eigenpairs the real and imaginary parts of the eigenvector
are depicted.

different Rayleigh numbers. The leading eigenpairs calculated for Ra = 24 000, Γ =
1.57 are given in table 3. For these parameter values, the critical eigenvectors are (in or-
der of decreasing growth rate): two conjugate pairs with azimuthal wavelengths m =4
and m = 3, a real eigenvector with m =1, and another conjugate pair with m =5.

Figure 5 represents the dependence of the leading eigenvalues on Rayleigh number
for aspect ratios Γ = 1.47 and Γ = 1.57, along with the azimuthal wavenumbers of the
corresponding eigenvectors. Rac2 was calculated by determining the zero crossing of
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Figure 5. Leading eigenvalues as a function of Rayleigh number for aspect ratio Γ = 1.47:
(a) real part, (b) imaginary part and for aspect ratio Γ =1.57: (c) real part, (d ) imaginary part.
Vertical thin dashed line marks Rac2 = 24 738 for Γ = 1.47 and Rac2 = 22 849 for Γ = 1.57.

µ (Ra), the growth rate of the leading eigenvalue (that of the largest real part), by linear
interpolation. (Critical Rayleigh numbers calculated by introducing perturbations into
nonlinear simulations at various values of Ra, and fitting the initial evolution to an
exponential to calculate growth or decay rates µ(Ra) gave similar results.) We then
calculated ωc2 ≡ ω(Rac2), also by linear interpolation. The values we obtained for
two aspect ratios Γ = 1.47 and Γ = 1.57, and the corresponding values published by
Wanschura et al. (1996) are those given in table 2. The critical wavenumbers are the
same, and the errors in Rac2 and in ωc2 are less than 1%. In what follows, we will
focus on the m = 3 instability, since the m =4 transition is similar; the aspect ratio is
Γ =1.47 unless otherwise specified.

We summarize here the differences between our numerical method and that of
Wanschura et al. (1996). We linearized a timestepping code in order to, in effect,
carry out the power method (supplemented by an Arnoldi decomposition) on the
exponential exp(L�t) of the Jacobian. Wanschura et al. constructed the Jacobian
matrix L and used inverse iteration to compute its eigenvalues. Our calculation was
restricted to one of the two identical decoupled subproblems, corresponding to only
one of the invariant subspaces of the form (2.12a) or (2.12b). As a result, the complex
eigenfunctions we show in table 3 are all in the eigenspace corresponding to standing
waves, with three axes of reflection symmetry. Basis vectors for the remainder of the
four-dimensional eigenspace can be found by rotating the eigenvectors of table 3,
i.e. multiplying by sin(mθ) instead of cos(mθ). Wanschura et al., in contrast, used the
travelling-wave form as an initial condition or invariant subspace, as discussed below.

In figure 6, we show representative elements of the eigenspace associated with the
m =3 complex eigenvector at Ra = 25 000. Figures 6(a) and 6(b) show ĥR(r, z) cos(mθ)
and ĥI (r, z) cos(mθ), while figures 6(c)–6(g) are generated via

C(ĥR(r, z) cos(m(θ − θ0)) + ĥI (r, z) sin(m(θ + θ0))), (3.1)
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(a) (b)

(c) (d) (e) ( f ) (g)

Figure 6. Eigenvectors for Γ = 1.47, Ra= 25 000 (temperature field contours at z = 0):
(a) real part of the critical eigenvector; (b) imaginary part of the critical eigenvector;

(c–g) superposition of the two fields via ĥR(r, z) cos(m(θ − θ0)) + ĥI (r, z) sin(m(θ + θ0)), with
mθ0 of (c) 0, (d ) π/4, (e) π/2, (f ) 3π/4, (g) 0.92π.

(a) (b) (c) (d) (e) ( f )

Figure 7. Standing waves at Ra= 26 000: temperature contours on the midplane at t = 0,
T/6, 2T/6, . . . .

(a) (b) (c) (d) (e) ( f )

Figure 8. Standing waves at Ra=26 000: contours of azimuthal velocity on the midplane
at t = 0, T/6, 2T/6, . . . .

a form equivalent to (2.21) after translation of θ and of t . Clockwise travelling
waves ensue for mθ0 = π/2 (c), counterclockwise travelling waves for mθ0 = 0 (e), and
standing waves at different temporal phases for mθ0 = ± π/4 (d,f ). Thus, the angle
mθ0 is similar to that used in figure 2. An eigenvector which corresponds to neither
travelling nor standing waves is shown in figure 6(g). These are all depicted on the
slice z = 0; when we plot the field of figure 6(c) at z = 0.3, we recover the form shown
by Wanschura et al. We emphasize, however, that the other fields depicted in figure 6
are all equally valid eigenvectors. In particular, a nonlinear analysis, such as the
simulations presented below, is required to determine whether the resulting nonlinear
flow near onset is a travelling or a standing wave.

3.4. Weakly unstable standing waves

Above the critical Rayleigh number Rac2, a slightly perturbed axisymmetric state
evolved in our simulations towards a three-dimensional time-dependent state,
presented in figures 7, 8 and 9. Figure 7 shows temperature contours on the midplane
at six regularly spaced instants in time within one oscillation period. In contrast
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Figure 9. Standing waves at Ra= 26 000: temperature versus θ at (r, z) = (0.7, 0.3) at five
successive times.
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Figure 10. Standing waves at Ra=26 000 after a time integration sufficiently long to see the
beginning of breaking of reflection symmetry. Temperature versus θ at (r, z) = (0.7, 0.3) at five
successive times.

to the eigenvectors depicted previously, figure 7 displays full nonlinear temperature
fields, which are dominated by a large axisymmetric component. There are six pulsing
extrema, engendering oscillation between two triangular structures of opposite phases
(figures 7 a and 7 d ). At each instant, the flow is invariant under rotation in θ by
2π/3. In addition, this flow is also symmetric with respect to three different axes
of reflection. Figure 8 shows contours of azimuthal velocity at the same times as
figure 7. Figure 9 shows the temperature dependence on the angle θ for fixed radius
and height at different times. Six fixed nodes identify this state as a standing wave
with azimuthal wavelength 2π/3.

The standing-wave state persists for such a long time that it might seem stable.
However, a small reflection–symmetry breaking imperfection develops that eventually
leads to the transition to travelling waves. Figure 10 shows the temperature
dependence on the angle θ for the same parameters as figure 9, but at a later
time. The breaking of reflection symmetry can be observed when the amplitude of the
standing wave is small. The standing waves can be stabilized by imposing reflection
symmetry. When we did this, above a threshold Rac3 ≈ 27 000, we discovered a new
(unstable) standing-wave solution, displayed in figure 11 for Ra = 30 000.

In order to study the transition from standing to travelling waves, we monitored
the growth of antisymmetric components. When the standing wave is still dominant,
the amplitude of the antisymmetric components behaves in time like (A cos ωt +
B) exp(µsw→tw t), where µsw→tw is the growth rate from standing waves to travelling
waves. The growth rate µsw→tw, shown on figure 12 as a function of Ra, is about
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(a) (b) (c) (d) (e) ( f )

Figure 11. Oscillatory solution obtained at Ra= 30 000 by imposing reflection symmetry:
temperature contours on the midplane at t = 0, T/6, 2T/6, . . . .
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Figure 12. Growth rates as a function of Rayleigh number. Solid line: growth rate µ0→3 of
m= 3 eigenvector (either standing or travelling waves) from the axisymmetric solution (from
linear evolution). Squares: growth rate µsw→tw of travelling waves from standing waves (from
nonlinear simulation) with linear fit as dashed line.
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Figure 13. Travelling waves at Ra= 26 000: temperature versus θ angle, for (r, z) = (0.7, 0.3),
at four different instants during one oscillation period T .

two-thirds of µ0→3, the growth rate from the axisymmetric state to an m =3 flow
(denoted in the previous sections by µ). The observed lifetime of the standing waves
decreases as the Rayleigh number is increased, since the growth rate µsw→tw increases.

3.5. Stable travelling waves

After the pattern has evolved sufficiently from the standing-wave state, the fixed
antinodes abruptly begin to rotate about the cylinder axis. The six pulsing spots
change into three rotating spots, as the standing waves become travelling waves with
the same azimuthal wavelength. Figures 13, 14 and 15 depict temperature profiles
and contours of the temperature and the azimuthal velocity of the travelling waves
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(a) (b) (c) (d) (e) ( f )

Figure 14. Counterclockwise travelling wave at Ra= 26 000: temperature contours on the
midplane at t = 0, T/6, 2T/6, . . . .

(a) (b) (c) (d) (e) ( f )

Figure 15. Counterclockwise travelling wave at Ra= 26 000: contours of azimuthal velocity
on the midplane at t = 0, T/6, 2T/6, . . . .

at different times. The travelling waves, like the standing waves, have three-fold
rotational symmetry, but do not have reflection symmetry.

Travelling waves are the final state of the time evolution. The reason for which
we obtained standing waves before travelling waves in our simulations is that our
initial conditions were reflection symmetric and our numerical procedures introduce
antisymmetric perturbations at a low rate. (This is also seen in the simulations of
thermocapillary flow by Leypoldt et al. 2000.) When the Rayleigh number is decreased,
travelling waves persist until Ra reaches Rac2.

We conducted simulations for several values of Γ in the range 1.45 � Γ < 1.53 and
observed weakly unstable standing waves and stable travelling waves for all of them.
We believe that the same scenario also occurs for 1.53 � Γ � 1.57, but with azimuthal
wavenumber m = 4 instead of m =3.

3.6. Amplitudes and frequencies

We calculated the energy E of both types of waves by first defining a norm whose
square is

1

Ra

(
〈u, u〉
Pr

+
〈h, h〉
Ra

)
, (3.2)

where 〈, 〉 denotes spatial integration; (3.2) is one of many possible choices for this
system. We then simulated the nonlinear evolution equations and calculated (u, h)
as the difference between the three-dimensional and the axisymmetric solution. We
define E to be the integral of (3.2) over one oscillation period.

The energies Esw, Etw and frequencies ωsw, ωtw as a function of Ra are shown in
figure 16. The energies and frequencies for the two types of waves are quite close.
The frequency ω0→3 obtained from linear stability analysis is also reproduced from
figure 5(b) for comparison. For both types of waves, the frequencies near the threshold
are close to the Hopf frequency and the energy satisfies E ∝ (Ra − Rac2). These are
hallmarks of a supercritical Hopf bifurcation.

3.7. Normal form coefficients

Using the growth rates, amplitudes and frequencies of the standing and travelling
waves that we have presented in §§ 3.3 and 3.6, it is possible to calculate the coefficients
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Figure 16. Dependence of energy and frequency on Rayleigh number for standing and
travelling waves. Vertical dashed line indicates the critical Rayleigh number Rac2 for onset of
the waves.

of the normal form (2.24) for our particular case. The bifurcation parameter µ = µ0→3

and frequency ω = ω0→3 vary linearly with Ra − Rac2, while the other coefficients ar ,
br , ai and bi are constants.

From the data in figures 5(a) and 5(b), we extract the fits

µ0→3 = 14.98
Ra − Rac2

Rac2

, (3.3a)

ω0→3 = 42.33 + 21.21
Ra − Rac2

Rac2

. (3.3b)

From the data in figure 16 we extract the fits

Etw = A2
tw = ρ2

+ =
−µ

br

= 0.2037
Ra − Rac2

Rac2

, (3.4a)

Esw = A2
sw = ρ2

+ + ρ2
− = 2

−µ

ar + 2br

= 0.13
Ra − Rac2

Rac2

, (3.4b)

ωtw = ω0→3 − bi

br

µ = 42.33 + 16.26
Ra − Rac2

Rac2

, (3.4c)

ωsw = ω0→3 − ai + 2bi

ar + 2br

µ = 42.33 + 17.29
Ra − Rac2

Rac2

. (3.4d)

Equations (3.4) are used to determine the nonlinear coefficients as

br = −73.5, ar = −83.6, (3.5a,b)

bi = −24.3, ai = 11.7. (3.5c,d)

An additional equation is provided by the data in figure 12 showing the growth rate
µsw→tw from standing to travelling waves:

µsw→tw =
2ar

ar + 2br

µ = 10.23
Ra − Rac2

Rac2

, (3.6)

and provides a second determination of ar

ar =
−µsw→tw

A2
sw

= −78.8, (3.7)

which differs by 6% from (3.5b).
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4. Conclusion
We have used both nonlinear simulations and linear stability analysis to

elucidate the behaviour of Rayleigh–Bénard convection in the parameter region
of 1.45 � Γ � 1.57, Pr = 1 first studied by Wanschura et al. (1996). In this regime, the
primary axisymmetric convective state loses stability to an m =3 or m =4 perturbation
via a Hopf bifurcation whose critical eigenspace is four-dimensional. We calculated
representative eigenvectors and explained how these relate to those computed by
Wanschura et al. The bifurcation scenario guarantees that branches of standing
waves and of travelling waves are created at the bifurcation, but that, at most,
one of these branches is stable. Our nonlinear simulations showed a supercritical
bifurcation leading to long-lived standing waves which were eventually succeeded by
travelling waves, both as time progressed and as the Rayleigh number was increased.
We explained this by showing that the rate of transition from standing waves to
travelling waves, while positive, is nevertheless small. In the absence of long-time
integration and of these analyses, it would be easy to conclude that the standing
waves were stable. This underlines the importance of calculating growth rates, in
addition to carrying out nonlinear simulations, and of using established bifurcation
scenarios to interpret physical phenomena.

The numerical and theoretical techniques we have used can be generally applied
to study transitions in hydrodynamic problems. Our main tool was direct numerical
simulation of the governing Boussinesq equations using a pseudospectral semi-implicit
timestepping code. We complemented this approach with several other techniques.
To carry out stability analysis, we first linearized the code. This requires very little
modification of the existing code, but yields results which are far more precise and
robust than restricting integration to the time interval during which perturbations
to the basic state are small. Integrating the linearized equations is, in effect, an
implementation of the power method for finding the fastest growing eigenvalues
and corresponding eigenvectors. Eigenvectors with different azimuthal wavenumbers
can be found simultaneously, since the linearized evolution of each Fourier mode
is independent of the others. For a single wavenumber, this use of the power
method is rendered more accurate and more general by postprocessing the results of
linearized time integration with the Arnoldi decomposition to extract several, possibly
complex, eigenvectors. We also interpreted our results in light of known results
concerning axisymmetry-breaking Hopf bifurcations in systems with O(2) symmetry.
This framework allows us to generate the four-dimensional eigenspace by combining
eigenvectors with different symmetries. Traditionally, eigenvectors corresponding to
clockwise and counterclockwise travelling waves are combined to form standing
waves; we used a complementary, but equivalent, approach of combining standing
waves of different spatial phases to form travelling waves. Finally, we interpreted our
results in terms of the four ordinary differential equations comprising the normal
form for Hopf bifurcations in systems with O(2) symmetry. Using our nonlinear
simulations of the governing Boussinesq equations, we were able to calculate the
various coefficients in the normal form equations.

We have not sought to determine the limits of the range of this phenomenon, in
aspect ratio and Prandtl number. As these ranges were given by Wanschura et al. only
for Pr =1, a future direction would be to determine the whole zone in the parameter
space where the Hopf bifurcation occurs. It would be interesting also to examine
more closely the pulsing pattern found by Hof et al. (1999) at Ra = 33 000, Γ =2,
Pr= 6.7, in order to determine whether this state, evolving from axisymmetric flow,
is the result of a bifurcation similar to that described in the present paper.
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The computations were performed on the NEC SX5 of the IDRIS (Institut du
Développement et des Ressources en Informatique Scientifique) supercomputer center
of the CNRS (Centre National pour la Recherche Scientifique) under project 1119.
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